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ABSTRACT 

 
We propose a new partial volume (PV) segmentation scheme to extract bladder wall for computer aided detection (CAD) 
of bladder lesions using multispectral MR images.  Compared with CT images, MR images provide not only a better 
tissue contrast between bladder wall and bladder lumen, but also the multispectral information.  As multispectral images 
are spatially registered over three-dimensional space, information extracted from them is more valuable than that 
extracted from each image individually.  Furthermore, the intrinsic T1 and T2 contrast of the urine against the bladder 
wall eliminates the invasive air insufflation procedure.  Because the earliest stages of bladder lesion growth tend to 
develop gradually and migrate slowly from the mucosa into the bladder wall, our proposed PV algorithm quantifies 
images as percentages of tissues inside each voxel.  It preserves both morphology and texture information and provides 
tissue growth tendency in addition to the anatomical structure.  Our CAD system utilizes a multi-scan protocol on dual 
(full and empty of urine) states of the bladder to extract both geometrical and texture information.  Moreover, multi-scan 
of transverse and coronal MR images eliminates motion artifacts.  Experimental results indicate that the presented 
scheme is feasible towards mass screening and lesion detection for virtual cystoscopy (VC). 
 
Keywords: Virtual Endoscopy, Partial Volume Segmentation, Computer Aided Detection, MRI-based Virtual 
Cystoscopy, Non-invasive Screening. 
 

1. INTRODUCTION 
 
Bladder cancer is the fifth leading cause of cancer deaths in the United States.  Over 56,500 cases of developed bladder 
carcinoma and more than 12,600 deaths were reported in 2002 [1].  In the last decade, the occurrence of bladder 
malignances has increased by 36% [2].  A common test for bladder cancer is urine dipsticks or standard urinalysis, which 
can be tested at home. Its sensitivity and specificity are approximately 90% and 70%, respectively [3].  However, the 
finding is usually at the very late stage and unable to provide the accurate location and size of the lesion. 
 
While currently available cystoscopy is the most accurate diagnostic procedure for detecting the lesion, it is invasive, 
expensive, uncomfortable, lacks an objective scale and has limited field-of-view (FOV).  It isn’t indicative or applicable 
in patients with severe urethral strictures or active vesical bleeding.  Patients are usually reluctant for such examination.  
Therefore, a minimal or non-invasive, safe, and low-cost method to evaluate the bladder would be preferred by most 
patients. 
 
Recently, virtual cystoscopy (VC) has been developed as an alternative means for early diagnosis of bladder 
abnormalities.  Several clinical VC feasibility studies have been reported [4-7], based on computer tomography (CT) 
technologies.  Because the earliest stages of bladder lesion development are inside the mucosa with gradual extension 

                                                
*Correspondence: li@postbox.csi.cuny.edu; phone 718 982-2993; fax 718 982-2830; Image Processing and Computer Vision 
Research Laboratory, Department of Engineering Science and Physics, College of Staten Island, City University of New York, Staten 
Island, NY 10314. 

Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, 
edited by Amir A. Amini, Armando Manduca, Proceedings of SPIE Vol. 5369 
(SPIE, Bellingham, WA, 2004) · 1605-7422/04/$15 · doi: 10.1117/12.535913

199



into bladder muscle, a desirable “visual gradient” between bladder lumen and wall is required for differentiating the 
associated structures [8, 9].  However, in CT images, bladder muscle has no contrast difference from the lumen filled 
with urine.  Although bladder insufflation with room air or CO2 via a Foley catheter is feasible to obtain the contrast 
between bladder wall and the lumen, it is invasive and unable to acquire the contrast among the tissues in the 
wall/mucosa.  Therefore, CT-based VC can only detect the lesions with significantly-developed geometry information.  
The lack of tissue contrast, as well as the uncomfortable invasive insufflation procedure (which may induce infection), 
become the major limitation of its ability for early detection of bladder lesions. 
 
By magnetic resonance (MR) imaging technologies, VC has shown its potential in early investigation of bladder lesion 
[10, 11, 12].  MR images provide not only a better tissue contrast from bladder wall to the lumen (without air 
insufflation), but also the multi-spectral information, as compared to the CT images.  As multi-spectral (T1- and T2-
weighted) MR images are spatially registered over three-dimensional (3D) space, information extracted by means of 
image processing from images is obviously more valuable than that extracted from each image individually.  
Furthermore, the intrinsic T1 and T2 contrast of the urine against the bladder wall eliminates completely the invasive air 
insufflation procedure.  Because the earliest stages of bladder lesion development are in the mucosa with gradual 
extension into bladder muscle, in this paper, we focus our attention on the mucosa layer of the bladder wall for computer 
aided detection of the bladder lesions. 
 

2. METHODS 
 
It is expected that early sign of bladder lesion would be reflected by both the morphology and texture on the bladder wall 
and mucosa.  The morphological difference and texture variation could appear on the bladder wall when the bladder 
lumen is in different states, e.g., full of urine or near empty.  To suppress motion artifacts, multi-scan of transverse and 
coronal multispectral MR images were acquired at empty and full states, respectively.  Our mixture-based scheme 
specifies on quantifying images as percentages of tissues inside that voxel.  This mixture-based image segmentation has 
unlimited spatial resolution on the tissue boundaries and provide tissue growth tendency in addition to the anatomical 
structure of the tissue.  We further developed a computer aided diagnosis and detection system based on the mixture 
segmentation.  Experimental studies on patients are promising. In this paper, we proposed a novel mixture-based 
computer aided diagnosis system using multispectral MR images. 
 
2.1 MRI data acquisition 
 
Multispectral MR images were acquired by a Phillips 1.5 T Edge whole-body scanner with the body coil as the 
transceiver.  A spoiled-GRASS sequence was employed to acquire T1-weighted transverse images with parameter of 
256x256 matrix size, 38 cm FOV, 1.5 mm slice thickness, TE=3 ms, TR=9 ms, 30 degree flip angle, and one-scan 
average.  With the same acquisition parameters, a T1-weighted coronal image was acquired.  Correspondingly, an axial 
FSE sequence was used to collect T2-weighted transverse images with the same acquisition location and parameters, 
except for TE=96 ms, TR=12167 ms, 90 degree flip angle, and two-scan average.  Then, a coronal FSE sequence was 
used for acquiring the T2-weighted coronal images.  
 
Dual states of MR imaging were designed for the study.  After the patient voided, patient was asked to drink a cup of 
water.  Images of the nearly empty state of the bladder were acquired first. Waiting for a while, when the patient feels 
bladder full, full state images were acquired.  The dual states of multi-scan scheme provide both geometric and texture 
information.  
 
In T1-weighted images, there exists an observable contrast between urine lumen and bladder wall as well as between 
bladder wall and other surrounding tissues (Fig. 1a).  The bladder wall thickness becomes thicker in the empty states 
(Fig. 1b).  However, the boundary between bladder wall and rectum wall becomes very vague.  On the other hand, T2-
weighted images provide reciprocal information with a brighten urine lumen to be distinguished easily from other tissues 
(Fig. 1c and Fig. 1d). 
 
The image acquisition time is about 2 to 5 minutes for obtaining a T1-weighted image.  During this period, it is unlikely 
for patients to hold a single breath.  Therefore, motion artifacts are expected along the direction of spine in the transverse 

200     Proc. of SPIE Vol. 5369



images.  In order to overcome this artifact, a corresponding coronal image is obtained in the meantime.  It is expected 
that this multi-scan scheme will reduce false positive (FP) in lesion detection. 

 

       
(a)                                         (b)                                             (c)                                        (d) 

Fig 1.  (a) One slice of a T1-weighted image at the full state.  (b) One slice of a T1-weighted image at the empty state, where 
the thickness of the bladder wall is thicker than that at the full state.  (c) One slice of a T2-weighed image at the full state, 
where the urine lumen could be easily distinguished.  (d) One slice of a T2-weighed image at the empty state. 

 
2.2 Image processing 
 
A 3D interpolation procedure was first applied to the datasets to construct isotropic voxels in the 3D domain.  The size of 
dataset was expanded from 256x256xn to 512x512xm, where n was the slice number of the original dataset and m was 
the slice number of the interpolated dataset [13, 14].  Following that, a new PV segmentation algorithm was developed to 
achieve mixture segmentation and extract the bladder wall. 
 
Given the l element of multispectral images }{ ilYY = , i = 1, 2, …, I, over the total number of voxels in the acquired 

image, let M be a set of vectors M = {m1 , …, m2 , …, mI }, where ikm  reflects the fraction of tissue type k inside voxel i.  

Each ily  follows a random process as 
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where klµ denotes the mean of class k; ikm is the probability of voxel i belonging to class k; and iln is the Gaussian noise 

with zero mean and variance of ilσ .  An Expectation and Maximization (EM) algorithm was utilized to achieve robust 

model parameter estimation [15, 16] as 
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The PV segmentation is performed by a maximum a posterior (MAP) principle, where a Markov random field (MRF) 
model-based prior [17-20] is applied. 
 
After image segmentation, a mixture (mucosa) layer indicating the bladder wall was obtained directly from the 
algorithm.  By choosing a seed point from the lumen, the bladder lumen could be extracted by means of region growing 
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algorithm.  Fig. 2 shows a slice of T1- and T2- weighted transverse images, and the corresponding extracted mucosa 
layer. 

 

           
(a)                                          (b)                                         (c) 

Fig. 2.  (a)-(b): A slice of T1-weighted and T2-weighted images in the transverse scan.  (c) The extracted mucosa layer 
indicating bladder lumen wall. 

 
2.3 Display system 
 
Registration is needed for simultaneously displaying the dual states of bladder.  In practice, physician will perform an 
initial inspection before examining the abnormal section.  Therefore, a perfect registration isn’t necessary.  In this study, 
we calculated the central mass of the bladder and chose the central mass as a reference for registration. 
 
Dual states of bladder (full and near empty) and multi-scans (transverse and coronal) are viewed simultaneously through 
different windows.  At each state, we reconstruct both inner and outer bladder wall from the mixture-based segmentation 
[21].  Furthermore, the system provides physicians with two-view direction (from outside and inside).  Physicians can 
view bladder at any angle and any distance.  When the physician rotates the bladder in one window, the system will 
calculate the relative parameter, and rotate the bladder at the other three windows to display the same section of the 
bladder.  In addition, a transparent attribute is designed for physicians to view the whole bladder transparently. 
 
2.4 Computer aided detection 
 
To detect the abnormal section from the bladder datasets, we developed a mixture based detection method [22].  A 3D 
geometrical feature extraction algorithm is applied to extract the principal curvature, shape index, and curvedness of each 
mixel.  The extracted geometry information is utilized to distinguish bladder lesions from the normal bladder wall. 
 
2.4.1 Extracting 3D geometrical feature 
 
For each tissue element, there exists an iso-intensity surface across through that element volume.  Principal direction and 
curvature are two important geometrical attributes of the 3D surface.  To describe the shape of the surface, Dorai [23] 
presented two quantitative measures for a given point p: Shape Index SI and Curvedness R.  They are defined as: 
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where k1(p) and k2(p) are the principal curvatures, and k1(p) ≥ k2(p).  It is noted that the SI represents what kind of type 
the surface is, while the R represents what “curve” this surface is. 
 
Given a mixel mik , there are several tissue elements in that mixel.  We extract its principal curvature, shape index and 
curvedness and describe the shape information of this mixel.  However, the shape information only reflects a relative 
“local shape” relation between this mixel and its corresponding neighborhood.  On the other hand, the “global shape” 
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information provides an approximate shape description for a larger region, therefore describing the whole shape field.  
By applying the linear integral convolution (LIC) algorithm [24], we built two principal directions to construct a dual 
vector volume, i.e., two convoluted curvatures are obtained after the LIC.  These two curvatures reflect the “global” 
shape of the object.  We can utilize Eq. (5) and Eq. (6) to compute two new terms, )( pSI g  and )( pRg , i.e.,  “global 
shape index” and “global curvedness”.  Similar to the local shape index and curvedness, global shape information also 
provides a quantitative measure of the object shape.  
 
2.4.2 Detection of bladder lesions 
 
Normal bladder wall usually has regular shapes that are described as “elliptic curvature.”  That is, the shape description 
of the inner bladder wall should be “spherical cup” or “trough.”  This shape description can be applied to distinguish the 
bladder lesion from the normal bladder wall.  For those irregular sections in the bladder wall without smooth surface, the 
variance the local shape index value of the bladder wall may not as smooth as that of the regular wall.  If only based on 
the “local” geometrical shape information, FP detections will be easily produced.  We evaluated the corresponding 
“global” shape index and found its variance remains smooth for most of the irregular bladder wall section.  Therefore, all 
mixels whose “global” shape description is different from that of the normal bladder wall are extracted first. Based on 
the connectivity in the 3D space, all selected mixels are clustered into several groups, which are called as initial bladder 
lesion candidates.  
 
The initial bladder lesion candidates can be further divided into three groups:  real bladder lesions, noise candidates, and 
mimic candidates.  Noise candidates are usually generated due to MR imaging scan, patient movement, or segmentation 
error, which induces several little protuberance regions on the bladder wall.  According to our observation, they are 
usually very small with a tiny spherical top section.  On the other hand, the mimic candidates are generated due to 
normal tissues such as bladder tube and small tissue pieces connected to the bladder wall.  Both noise and mimic 
candidates are called FP candidates.  In order to eliminate FP candidates, we utilized the following filtering steps in our 
method. 
 
1) If the total voxel number of the candidate is small, this candidate will be classified as a FP candidate.  Similarly, if the 

size of the continuous spherical top in either local or global geometrical measure is small, this candidate will be 
classified as a FP candidate. 

2) If the position of the initial lesion candidate whose “local” and “global” general shapes do not lie in the spherical 
shape domain, this candidate is a FP candidate. 

 
3. RESULTS 

 
Two patients and four healthy male volunteers were recruited in this study.  An interactive display system has been 
developed for viewing inner and outer bladder walls.  Fig. 3 shows the outer view of transverse and coronal scans of 
bladder at two states, full and near empty.  While Fig. 4 shows the inner view of transverse and coronal scans of bladder 
at two states.  The interactive system allows physicians to view bladder at any angle and any distance. Physicians can 
also rotate the bladder and zoom in to inspect the abnormalities.  The advantages of multi-scans have shown in Fig. 5, 
where small artifacts appeared in the transverse scans but disappeared in the coronal scans.  The presented multi-scan 
scheme provides us complementary information, therefore increasing the detection accuracy. 
 
Perfect detection results were obtained from volunteer studies, as expected. In the patient study as shown in Fig. 6, one 
lesion with a size of 25-30 mm was detected at both states.  A small one with 8-10 mm size was detected in the full state 
while missed in the empty state.  When the scheme examined the texture information at the corresponding location in the 
empty state, this small one becomes a candidate.  All candidates were finally examined by the physician using the 
display system. 
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Fig. 3.  The outer view of transverse (left) and coronal (right) scans of bladder at two states, full (top) and near empty 
(bottom). 

 
 

 
 

Fig. 4.  The inner view of transverse (left) and coronal (right) scans of bladder at two states, full (top) and near empty 
(bottom). 
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Fig. 5.  Small artifacts appear in the transverse scan (left), while the corresponding coronal scan (right) provides a smooth 
view. 

 

 
 

      
 

Fig. 6.  One lesion with size of 25-30 mm was detected at both empty state (top) and full state (bottom left).  A small one 
with size of 8-10 mm was detected in the full state (bottom right). 

 
4. DISCUSSIONS AND CONCLUSIONS 

 
We have developed a new PV segmentation scheme to extract the bladder wall for CAD of bladder lesions using 
multispectral MR images.  The presented scheme is a non-invasive, user-friendly, and patient-comfortable procedure.  
From the experiment results, we conclude that information extracted from multispectral MR images provides us much 
more valuable information than that from each image individually.  The dual states of bladder provide dynamic (both 
geometric and texture) information.  In addition, multi-scan images overcome breathing motion artifacts.  Experimental 
results indicate the present scheme is feasible towards mass screening and lesion detection.  Further evaluations on a 
large number of patient datasets are under progress. 
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