
 

 

   
Abstract—In this work, we first introduced a reorganized form 

of the Novikov’s inversion formula for the attenuated Radon 
transform with parallel-beam geometry which utilizes the 
conventional filters (such as the Shepp-Logan, Hanning, etc.) to 
simplify image reconstruction procedures.  Then we developed an 
accurate reconstruction method for non-parallel beam 
geometries.  The method contains three major steps: (1) one-
dimensional rebinning using phase-shifting technique, (2) 
performing non-uniform Hilbert transform, and (3) applying the 
reorganized Novikov’s formula.  Numerical evaluations 
demonstrated its computational efficiency and sound stability to 
different levels of Poisson noise.  It also seemed to be very robust 
to different settings of fan-beam geometry from very long to very 
short focal lengths without affecting the reconstruction accuracy. 

I. INTRODUCTION 

ANTIATIVE reconstruction for single photon emission 
computed tomography (SPECT) with compensation for 

non-uniform attenuation is mathematically formulated as a task 
of inverting the attenuated Radon transform (AtRT).  A closed-
form inversion formula for parallel-beam (PB) geometry was 
derived by Novikov using wave propagation theory in 2000 
[1].  Thereafter, a generalized filtered backprojection (FBP) 
algorithm, which is based on a direct discretization of the 
Novikov’s inversion formula, was developed to demonstrate 
the feasibility for quantitative SPECT imaging with PB 
collimation geometry [2, 3]. 

In the generalized FBP algorithm, the divergence operation 
(which also can be understood as a filtering process) has to be 
performed, in addition to the well-established filtering and 
backprojection steps.  This differs from the classical FBP 
algorithm in which only one filtering step is needed.  Also, 
numerical evaluations of the generalized FBP implementation 
turned out to be less stable than its classical FBP analogue [4, 
5].  By manipulating the divergence operation, the Novikov’s 
inversion formula can be reorganized into two parts each has 
an explicit meaning [6].  One part has a major contribution to 
the image reconstruction and has the classic FBP form.  The 
other part is a correction component, which is insensitive to 
noise and also has the classic FBP form.  This paper explores 
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the potential of the reorganized formula to non-parallel beam 
(NPB) geometries, since in many clinical applications, NPB 
collimation geometries are desired, such as fan-beam (FB), 
asymmetrical fan-beam (AsF), and spatially varying focal 
length fan-beam (VFF) collimation geometries [7, 8, 9]. 

For FB geometry, an explicit inversion formula was 
discovered by Bukhgeim and Kazantsev [10, 11].  Their 
algorithm performs well when a specific equi-angular FB 
sampling is used [10].  However, applying their algorithm to 
other geometries, for example an equi-spatial FB sampling 
geometry, is not straightforward.  The challenge becomes even 
severer for deriving an explicit inversion formula for other 
more complicated geometries, such as the AsF and VFF 
geometries mentioned above. 

To the best of our knowledge, there is not yet a unified exact 
inversion formula for the AtRT under NPB geometries, except 
for the ray-driven technique we developed previously [12].  
This technique is built on the fact that a single datum in the 
NPB measurements corresponds to a single datum in the PB 
dataset, representing one line integral.  Due to the linearity of 
the inversion AtRT (which can be considered as a weighted 
summation or filtered backprojection operation), each line 
integral can be processed separately; therefore, the Novikov's 
inversion formula for the PB AtRT can be applied to perform 
the desired reconstruction in a NPB geometry ray-by-ray.  
However, the computational cost of this ray-driven technique 
is considerably high as known as O(N 4), as compared to O(N 
3) of the Novikov’s inversion formula for parallel geometry [2, 
3]. 

In this work, we developed a new reconstruction algorithm 
for the inversion of the AtRT with NPB geometries, which 
preserves the same accuracy and efficiency as the original 
inversion procedure for PB geometry.  This new algorithm is 
based on the reorganized Novikov’s explicit inversion formula, 
phase shifting technique and non-uniform Hilbert transform 
(HT).  Its derivation is presented for the VFF geometry, where 
the FB geometry is a special case.  Numerical studies were 
performed for equi-spatial FB, VFF, and AsF geometries in the 
presence of strong non-uniform attenuation coefficient 
medium, similar to that occurs in the human thorax.  Stability 
of the algorithm was tested with different focal length FB 
settings and with different levels of noise. 
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II. NOVIKOV’S INVERSION FORMULA 
Described below are the Novikov’s original inversion 

formula and its two-component reorganization, in which the 
major component is in a classical FBP form. 

A. Review of Novikov’s Inversion Formula 

Let ),( yxf  denote a function in space 2R , and 
)cossin,sincos(),( θθθθθ tstsftsf +−=  be the same 

function in the Cartesian coordinate system ),( ts  after 
rotation by an angle θ  along the anti-clockwise direction.  
For simplicity, we introduce two vector symbols of 

 )sin,(cos θθ=j and )cossin( θθ , −=k , and one 
complex symbol of 1−=i . 

If ),( yxf  represents the distribution of radiotracer 
concentration inside the body in SPECT imaging.  The γ  
photons, emitted from the radiotracer, are attenuated inside the 
body with coefficient distribution ),( yxµ  before they arrive 
at the detector.  Let ),( θsp  be the accumulated photon 
counts at position  s along detector view angle θ  in PB 
geometry, then 

∫
∞

∞−

−= ,)],(exp[),(),( dttsatsfsp θθθ               (1) 

where ∫
∞

=
t

dstsa ττµθθ ),(),( . 

Using the conventions in [1], the Novikov’s inversion 
formula for (1) can be expressed as follows 
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with ),]([2
1

1 θµ sh R=  and ),]([ 12 θshh H= .  The 
mathematical operators in (2) and (3) are defined below 

Hilbert transform:   ∫
∞

∞− −
= τ

τ
τ

π
d

s
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Half line integral:   ∫
∞

=
t

dsts ττµµ θθ ),(),(][D                           (5) 

Radon transform:    ∫
∞

∞−

= dttsfsf ),(),]([ θθR                       (6) 

Attenuated Radon transform: 

∫
∞

∞−

−= dttstsfsf )},(][exp{),(),]([ θθµ µθ DR              (7) 

Detailed derivation of the Novikov’s inversion formula can be 
found [1]. 

B. Classic FBP Version of Novikov’s Inversion Formula 
In [3], Natterer gave a very brief description on moving the 

divergence operator into the integral of equation (2), but the 
derivative was done by finite difference, which is similar to 
that of [2].  By moving the divergence operator and 
reorganizing the Novikov’s inversion formula, we obtained a 
classical FBP version [6].  The detailed derivation is given 
below.  First we introduce some utility definitions as follows. 

Sign convolution: 

∫
∞
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−= ττµµ θθ dttsts )sign(),(),(]~[D              (8) 

Complex combination: 
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Differential and Hilbert transform: 
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Weighted Radon transform: 

∫
∞

∞−

−= dttstsfsf )},(]~[exp{),(),](~[ θθµ µθ CR .    (11) 

Using these definitions, the Novikov’s inversion formula can 
be rewritten as 

θθ
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and ),(),(1 tsW
s

tsW θθ ∂
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Now the inversion formula is expressed by two terms.  It is 

easy to see that the first term θθ
π

µθ dsgtsW
krt
jrs

•=
•=∫

2

0

)],](~ )),([( T  

is in the classic (weighted) FBP form, where the discretization 
of the operator T is understood as the traditional filtering 
process with the Ramp, Shepp-Logan, Hanning, or the like 
filters, and the weighting factor ),( tsWθ

 depends only on the 
given attenuation map. 

We also found that the first term in equation (12) dominates 
the reconstruction result, while the second term serves as only 
a minor correction.  In the case of uniform attenuating 
medium, it can be proved that the second term contributes in 
the low frequency band 

π
µω
2

<  only.  Since the differential 

operation usually amplifies the high-frequency components in 
numerical implementation, another advantage of formula (12) 
is that the divergence operation only exists in the second term 
(with minor contribution) of the reconstruction formula. 
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III. RECONSTRUCTION FOR NPB GEOMETRIES 

In this section, we discuss how to apply the Novikov’s 
inversion formula for NPB geometries.  The VFF geometry is 
used for derivation of the reconstruction formula. 

A. 1D Rebinning with Phase Shifting. 
In Figure 1, a VFF geometry for SPECT is shown.  Let 

),( sg β  denote the projection data in the VFF geometry, and 
),( lp θ  be the projection data in the PB geometry.  If a full 

scan is performed along a circular orbit for each geometry, 
then g(.) and p(.) are 2π  periodic functions of the view 
angle β  and θ , respectively, and are related, as shown in 
Figure 1, by the following equation 

)
)(

])([],
)(

[tan(),(
22

1

sFs

RsFs
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+

−+= −ββ . 

With Fourier transform, it is easy to show that 
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therefore,  re-phased parallel data p with non-uniform 
sampling along radial distance axis are achieved from the VFF 
data. 

A

B

 
Figure 1:  Two-dimensional presentation of a varying focal-length fan-
beam geometry. 

B. Non-Uniform HT 
The explicit inversion formula (12) is exact for continually 

sampled data under PB geometry.  By another 1D linear 
interpolation along the radial direction, addition to the phase 
shift above, it would be straightforward to apply the inversion 
for the image reconstruction.  However, this usually results in 
the loss of reconstruction resolution [13], hence will not be 
explored in this work.  In the following, we will retain the non-
uniformly sampled projection data ),( ξϕp  with 

)(
])([

22 sFs
RsFs

+
−=ξ , and modify their related weighting functions 

in the inversion formula (12), then employ non-uniform HT to 
ensure an accurate image reconstruction. 

Since for NPB geometries, it is often the case that s is 
evenly sampled, for example in ],[ 00 ss− , then ξ  becomes 
non-evenly sampled.  For any functional )(ξg  that is sampled 

on non-uniform grids 
)(

])([
22

ii

ii
i

sFs

RsFs

+

−=ξ , its discrete HT 

must be carefully evaluated.  One method would be using the 
trapezoidal rule for a functional )(ξg  as follows 

j

N

ij ij
ii gg ∆

−
= ∑

≠ )(
1)()]([

ξξπ
ξξH ,   )(

2
1

11 −+ −=∆ iii ξξ .    (13) 

By our previous study [6], however, it is found that the 
direct implementation of HT via (13), which is essentially a 
convolution with x /1 π  )0,0( =xif , can result in the loss 
of image resolution.  To avoid this possible drawback, we 
adopt the same form of a low-pass filter used by Natterer for 
the HT [3]: 

( )
∫
∞

∞−
Ω −

−Ω−= dttg
t

tg )(
)(

)(cos1)](H[
ξπ

ξξ ,           (14) 

where 0>Ω  is the bandwidth.  Then the HT of a functional 
)(⋅g  sampled on the non-uniform grid )(sξ  can be derived as 

( )
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C. Reconstruction Procedure 
We summarize the implementation of the proposed 

reconstruction algorithm as follows: 
1) Modify the non-parallel projection data ),( sg β  to 

obtain the re-phased data ),( ξϕp  by the use of the phase 

shifting technique: ∑ −−=
n

n insG
sF

sinp )exp()()]
)(

(tanexp[),( 1 ϕξϕ ,  

and  
)(

])([
22 sFs

RsFs

+

−=ξ ; 

2) Calculate ),( tsWθ  and ),(1 tsWθ , using ),(][
2
1),(1 ξµξϕ ϕR=h  

),]([ 12 ξϕhh H= , and  ),(),(][),(]~[ 1 ξϕξµξµ ϕϕ htt −= DD , where 

the non-uniform HT of equation (15) is needed; 
3) Apply equation (12) for reconstruction. 

The above derivation is based on the VFF geometry, but it is 
straightforward to apply the reconstruction formula to other 
NPB geometries by selecting different focal length functions 

)(sF .  It is easy to see that the complexity of the 
implementation for NPB geometry reconstruction is in the 
same order as that for the PB case.  Numerical studies on the 
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computational efficiency and accuracy, as well as several other 
properties, are presented in the next section. 

 

IV. SIMULATION RESULTS 
In this section, we present computer simulation studies on 

the proposed NPB geometry reconstruction algorithm.  First, 
we test the algorithm for typical FB, VFF, and AsF geometries.  
Secondly, we study the stability of the algorithm to the 
variation of the FB focal length.  Finally, the robustness to the 
data noise is investigated for the VFF geometry.  The 
reconstruction time is also reported. 

The emission map used in the simulations is the 2D Shepp-
Logan mathematic phantom.  The attenuation map contains 
several ellipse structures with three different attenuation 
coefficient values similar to those of water, soft tissues, and 
bones in human being, see Figure 2.  Emission map ),( yxf  
and attenuation map ),( yxµ  were sampled in a grid of 
256×256.  Projections ),]([ θµ sfR  were sampled with 256 

bins by 256 views evenly spaced on 360 degrees for a 
corresponding geometry.  Each projection datum was 
computed by the line integral through the phantom maps.  
Without specifically stating, the same configurations will be 
applied in the following simulations. 

µ = 0.05 cm-1

µ = 0.30 cm-1

µ = 0.15 cm-1

Attenuation Map    Shepp-Logan phantom

 
Figure 2:  Two-dimensional presentation of the emission phantom (left) 
and the attenuation map (right). 

A.  Image Reconstruction for FB, VFF, and AsF Geometries 
For FB geometry, the focal length is 62.5 cm, the radius of 

rotation (ROR) is 17.5 cm, the detector size/length is 48 cm 
(evenly sampled by 256 detector bins of size 0.19 cm), and the 
image pixel size is 0.125 cm.  For the VFF geometry, the focal 
length function is bassF += 2)(  with 24.0=a , and 40=b .  
The detector size/length remains 48 cm (evenly sampled by 
256 detector bins of size 0.19 cm), and the ROR also remains 
17.5 cm.  The focal length varies from minimum of 40 cm to 
maximum of 178.24 cm (when s = 24 cm).  For the AsF 
geometry, its configuration is presented in Figure 3.  The 
simulated projections and their reconstructed results are 
presented in Figure 4. 

From the above three experiments, the proposed 
reconstruction algorithm demonstrated good performance for 
all FB, VFF, and AsF geometries.  The computation time for 
each one is 49 second, 53 second, and 52 second, respectively, 

on a PC Pentium III with 550 Mhz CPU and 256 MB RAM.  
The computation time for the PB geometry with the original 
Novikov’s formula is 45 second on the same machine. 

 
Figure 3:  Asymmetrical fan-beam geometry. 

 

   

   
Figure 4:  The simulated sinograms (top row) and their reconstructed 
images (bottom row) for FB, VFF, and ASF geometry (from left to 
right), respectively. 

B. Stability to the Variation of the Focal Length 
In this section, another property of the proposed 

reconstruction algorithm – the stability to the variation of the 
focal length is presented, which reflects the system 
amplification factor.  For this study, the simulations were 
performed for the FB geometry, with the focal length varying 
from very large (infinity) to very short one.  The detector 
size/length is 48 cm, and the ROR remains 17.5 cm. 

   

   
F=80cm                              F=60cm                              F=50cm 

Figure 5:  The simulated sinograms (top) and their reconstruction results 
(bottom) for the fan-beam geometry of different focal lengths. 

The simulated sinograms and corresponding reconstructed 
images are shown in Figure 5.  As the focal length becomes 

0-7803-8701-5/04/$20.00 (C) 2004 IEEE



 

 

shorter, the reconstructed images remain the same quality.  The 
reconstruction generates artifact-free images within the central 
FOV region, even if truncation occurs at the FOV periphery 
(for example, when the focal length reduces to 60 cm and 50 
cm in Figure 5).  These results demonstrated the stability of the 
proposed algorithm to the focal length variation. 

C. Robustness to the Noise in Measurements 
To include noise in simulation studies, each datum in the 

simulated noise-free VFF projections (in section A) above was 
assumed as the mean or average from its multiple 
measurements.  This mean was inputted to a Poisson random-
number generator to provide a noisy realization of the datum.  
Three different noise-level sinograms were generated by 
scaling the noise-free data and then adding Poisson noise.  The 
count levels are approximately, for each view of 256 bins, (1) 
1,000,000 counts, (2) 100,000 counts, and (3) 10,000 counts.  
The noisy reconstructed images are shown in Figure 6. 

Apparently, some details in the reconstructed images 
disappear due to the Poisson noise.  Also, the reconstructed 
image includes randomized spots across the FOV that are 
common to FBP or other analytical and iterative 
reconstructions of Poisson-noise projections without 
regularization or penalty on the noisy data.  However, a fairly 
good compensation for non-uniform attenuation is still 
observed in these noisy cases.  In addition, no obvious artifact 
is seen with the increase of the noise.  Accurate treatment of 
the Poisson noise or extraction of signal from the Poisson 
noise sinogram for the inversion formula or reconstruction 
algorithm is an important issue, and detailed discussion is 
beyond the scope of this work [14]. 

   
(a)                                       (b)                                        (c) 

Figure 6:  The simulated sinograms with different levels of noise (top) 
and their corresponding reconstructed images (bottom) under the VFF 
geometry.  (a) 1M counts per view of 256 bins, (b) 100K counts per 
view of 256 bins, and (c) 10K counts per view f 256 bins. 

V. CONCLUSIONS 
In this work, we presented a two-term representation of the 

Novikov’s inversion formula, and developed an algorithm for 
image reconstruction with NPB geometries.  The algorithm re-
aligns the non-parallel projection data along the view direction 
for all detector bins by the phase-shifting technique and 
implements appropriately the non-uniform HT, so that the 
reorganized Novikov’s inversion formula can be extended 
accurately and efficiently from parallel to non-parallel 
geometries.  By numerical simulations we showed that the 
presented NPB algorithm has comparable reconstruction 

quality and computation efficiency as the PB geometry 
formula and is robust to the variation of focal length (which is 
related to the system amplification factor) and the quantum 
noise in measurements.  The inversion procedure discussed in 
this paper provides a mathematically sound and unique 
solution to the attenuation problem, which is not only of 
theoretical interest, but also has practical significance in the 
sense that it may lead to quantitative SPECT in the future with 
additional compensation for other degradation factors, such as 
PSF (point spread function) variation, scatter, and the Poisson 
noise [15-18]. 
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