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Abstract—This work investigated a Karhunen-Loeve (K-L) 

domain adaptive Wiener filtering of correlated sinogram data, in 
terms of noise reduction and resolution preservation.  By adding 
Anscombe transform, this approach provides a means for 
accurate treatment of Poisson noise for SPECT (single photon 
emission computed tomography).  The Anscombe transform 
stabilizes the signal-dependent Poisson process with a nearly 
constant variance.  The K-L transform manipulates the stabilized 
sinogram into ordered principal components with their 
correspondingly ordered signal-to-noise ratios (SNRs).  Given the 
SNRs, a Wiener filter can be accurately designed for an adaptive 
penalized minimum least-square noise smoothing on each 
principal component.  A three-dimensional (3D) spatial noise 
filtering across the field-of-view then becomes a series of 2D 
process adaptive to each principal component, which can be 
implemented efficiently by parallelization.  Performance of this 
adaptive Poisson noise treatment was evaluated by simulated 
SPECT studies in terms of local impulse response and noise-
resolution tradeoff with comparison to the conventional low-pass 
noise filters.  The evaluation indicates the potential of the 
presented method for analytical inversion of the attenuated 
Radon transform in the presence of Poisson noise. 

Index Terms—Sinogram Poisson noise reduction, adaptive 
Wiener filtering, K-L transform, Anscombe transform, local 
impulse response, resolution uniformity. 

I. INTRODUCTION 
Nversion of the attenuated Radon transform for quantitative 
SPECT (single photon emission computed tomography) has 

become feasible [1, 2] due to the work of Novikov [3, 4], even 
for 180o data sampling [5-8].  Extension to include collimation 
and scatter effects has also become feasible [7, 9].  A major 
obstacle for the inversion-based approach to practical use is 
the signal-dependent Poisson noise [10].  Current practice 
utilizes a spatially-invariant low-pass filter, such as Hanning, 
to smooth the non-stationary noise frame-by-frame or 
projection-by-projection.  Extension to consider the signal-
dependent nature has been explored [11, 12].  Further 
investigation by filtering all the projection images together 
(i.e., filtering the sinogram which contains the angular 
correlation among the projections) has also been explored 
with improvement over filtering images individually [13, 14].  
It has been recognized that Karhunen-Loeve (K-L) transform 
has a unique advantage in handling correlative signals [15-
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17].  Incorporating this transform for accurate treatment of 
Poisson noise was investigated in [18], where the Anscombe 
transform [19] was employed to consider the non-stationary 
nature of the noise. 

This work investigates the K-L domain Poisson noise 
treatment strategy in terms of local impulse response (LIR) 
and noise-resolution tradeoff (NRT) with comparison to the 
conventional low-pass filters and some previously reported 
results of other approaches. 

II. METHOD AND MATERIALS 
Noise-filtering problem in SPECT can be viewed as to 
estimate the means (or noise-free projections), given a single 
realization of jointly independent Poisson distributed 
projection data, where the means or signals have either 
temporal and/or spatial correlation due to the projection 
process.  The estimation task here is to model accurately the 
signal-dependent noise nature within the K-L framework.  
There are several ways to handle the signal-dependence [20, 
21], where the Anscombe transform is a simple and effective 
method which converts a Poisson process into a nearly 
Gaussian with a constant variance of 0.25.  Since K-L 
transform is a linear operation, the noise modeling before and 
after the transform is equivalent.  In this work, we perform the 
Anscombe transform prior to the K-L transform. 

 

A. Anscombe Transform 
If x is Poisson distributed with mean equals to λ, then y = 

(x+3/8)1/2 can be approximated as Gaussian distributed with 
mean equals to (λ+1/8)1/2 and variance of 0.25.  The variance 
starts to decrease toward zero when λ goes to zero from four. 

B. K-L Transform 
In the Anscombe space, y is nearly Gaussian with a 

constant variance for λ > 4, see Figure 1, (if a line integral is 
less than 4 at a detector bin, the measured noisy datum at that 
bin has no much information for those image voxels 
associated with the line integral).  The linear K-L transform 
on sinogram y, (i.e., z = Ay, where A is the K-L transform 
matrix), will retain the properties of Gaussian distribution and 
constant variance [16, 17].  In other words, z is nearly 
Gaussian distributed with a constant variance of 0.25.  In the 
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K-L domain, we obtain a series of ordered eigenvalues and 
correspondingly we have a series of ordered principal 
components.  The eigenvalue is directly proportional to the 
signal variation of the corresponding principal component.  
Therefore, we have obtained the signal-to-noise ratio (SNR) 
for each principal component in the K-L domain.  In addition 
to the signal information manipulation, the K-L transform also 
simplifies the numerical calculation.  If the sinogram is a 
three-dimensional (3D) dataset (i.e., 2D detector-bin array 
plus the angular sampling), then each principal component is a 
2D image.  Operations on these images can be parallelized.  
Furthermore, those components may be discarded if their 
eigenvalues are very small [16, 17]. 

The K-L transform could be performed along three different 
directions, depending on the data sampling.  In the image 
domain, the most nearby voxels have the strongest correlation, 
which is usually specified by a Markov random field model.  
This nearby voxel correlation is embedded in the line integrals 
or sinogram.  A straightforward implementation of the K-L 
transform is among the nearby bins of each projection image 
[22].  Another implementation is along the nearby projections 
to consider the angular correlation [23].  For SPECT 
application with a significant collimation effect, the 
correlation along image slice or sinogram direction can be 
significant for the K-L transform [18].  In the following, we 
will focus on the third implementation.  Comparison of these 
three different implementations will be reported below. 

C. K-L Domain Adaptive Noise Filtering 
Given the constant variance and Gaussian nature, a 

penalized minimum least-square estimation (PMLSE) can be 
established to treat the noise adaptively by the obtained SNR 
for each principal component.  The minimization for each 
component can be numerically performed by a Wiener filter: 
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where kZ
S  is the 2D power spectrum of the k-th principal 

component data kz  and (
ts ωω , ) denote the 2D FT 

coordinates for spatial coordinates (s, t) of the k-th principal 
component.  Notation β is a smoothing parameter, controlling 
the degree of smoothness.  If it is equal to 1, a MLSE solution 
is obtained.  If it is greater than 1, a PMLSE solution is 
approached.  The Wiener filter of Eq.(1) contains explicitly 
the constant variance 2

nσ = 0.25, while the signal is related to 
the power spectrum kZ

S .  An explicit relation between SNR 

and each principal component is given in [18]. 

III. EXPERIMENTAL DESIGN AND RESULTS 
Computer simulations were conducted to evaluate the 

performance of the presented K-L domain adaptive Wiener 
filtering of Poisson noise in the sinogram space, in terms of 
LIR and NRT on the reconstructed images using a standard 
filtered backprojection (FBP) method (i.e., with a unapodized 
Ramp filter at the Nyquist frequency cutoff).  Since the 
standard FBP reconstruction does not alter the data noise 
properties, comparison to the conventional low-pass filters 

was performed using their FBP results.  Comparison to 
previously reported results of other approaches was also 
reported. 

 

A. Experimental Design 
To ensure a reliable comparison study, we first establish the 

baseline of FBP reconstruction and LIR measures.  This 
baseline was measured by the resolution uniformity and 
isotropy.  An elliptic digital phantom of 128 cubic size with a 
"hot" and "cold" disks was constructed, as shown in Figure 2.  
The two disk centers are at different locations off the phantom 
center.  Three different count densities were simulated with 
relative emission intensities of 3, 2, and 1 in the hot disk (left), 
the background ellipse, and the cold disk (right), respectively, 
which allow us to test the dependence of LIR on different 
count levels.  The phantom is essentially the same as that used 
in [24, 25].  Emission scans was simulated with 128 radial 
bins and 128 projection angles uniformly spaced over 360º by 
strip integrals.  Attenuation, scatter and collimation effects 
were not considered for the purpose of this study, which 
focuses only on the projection mean estimation.  Thus the 
simulated imaging system has intrinsically uniform and 
isotropic resolution.  Any resolution effect would be due to 
the used filtering techniques.  A total of 250 realizations of 
noisy projections were generated from the simulated noise-
free projections using a Gaussian white noise generator (zero 
mean and variance equals to the average of the noise-free 
data).  Emission images were reconstructed by the FBP 
method after the noisy projections were filtered by the 
Hanning filter, resulting in 250 images for an empirical LIR 
evaluation [24, 25].  From these 250 reconstructions, three 
LIRs each at the three pixels, which are located in the centers 
of the phantom and the two disks respectively, were 
computed.  In addition, a linearized prediction of the LIR [24, 
25] from noise-free FBP reconstruction was also computed.  
On the top of Figure 3 displays the horizontal profiles through 
the LIR functions from the FBP reconstructions.  The circles 
denote the empirical results of LIR from the 250 noisy 
realizations with the Hanning filter (cutoff at 0.8 Nyquist 
frequency).  The solid lines denote the linearized predictions 
of LIR from the standard FBP reconstruction of the noise-free 
projections.  Agreement between the empirical results and the 
analytical prediction is clearly seen, especially in the 
neighborhood of the interested pixels.  In addition to the 
resolution uniformity, the isotropic property at a given point in 
the reconstructed image is another important factor for 
consideration.  On the bottom of Figure 3 displays the 
contours of the LIR functions at levels 25%, 50%, 75%, and 
99% of the peak value for the three pixels of interest.  As 
expected the spatially invariant low-pass Hanning filter 
provides isotropic FBP reconstruction for stationary noise, 
although some of other filters and reconstructed methods may 
lead to asymmetric LIRs [24, 25].  These results established 
the baseline of using FBP and LIR for measures of different 

Figure 2:  Digital 
phantom used to 
examine spatial 
resolution properties. 
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filters’ performances. 
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Figure 3:  Top row shows the horizontal profiles, for the three pixels of interest 
respectively, through the three LIR functions of FBP reconstruction with Hanning 
filter (cutoff at 0.8 Nyquest frequency).  The circles denote the empirical results 
from 250 noisy realizations and solid lines denote the linearized predictions of 
LIR.  Bottom row shows the contours of the LIR functions at 25%, 50%, 75%, and 
99% of the peak value for the three pixels of interest, respectively.  From left to 
right: corresponding to the point at the center of the cold disk, the center of the 
image, and the center of the hot disk, respectively. 
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Figure 4:  Spectra of the normalized eigenvalues of K-L transform along different 
directions.  The horizontal axis shows the number of ordered principal 
components. 

B. K-L Transform along Different Directions 
The difference of K-L transform along the direction of bins, 

views, and slices, respectively, of a noise-free sinogram is 
shown by Figure 4, where the data was simulated from a 3D 
phantom modified from that of Figure 2 and the Anscombe 
transform was not applied.  The disks in the 3D phantom 
become spheres.  The signal distribution along the principal 
components is similar for K-L transform along the directions 
of bins and views.  The transform along the direction of the 
slices or sinograms concentrates the signal distribution toward 
the first 60 among the 128 principal components.  In other 
words, the K-L transform along the direction of the sinograms 
is more effective in concentrating the correlated signal 
distribution toward the major ordered principal components 
than that along the directions of the bins and views.  
Therefore, the K-L transform along the sinogram direction is 
chosen in the following studies. 

C. LIR Measure on the K-L Domain Adaptive Filter 
The data simulation for the results of Figure 3 was repeated 

using the modified 3D phantom.  A total of 250 noisy 

realizations of Poisson nature from the noise-free projections 
were generated, Anscombe transformed, treated by the K-L 
domain adaptive Wiener filter and then reconstructed by the 
standard FBP method.  Figure 5 shows the horizontal profiles 
through the three LIR functions (for the three pixels of 
interest) of the FBP reconstructions from the 250 noisy 
realizations.  The LIRs at the centers of the hot and cold disks 
are at the same level, and the LIR at the center of the image is 
about 0.02 higher.  This is a significant improvement as 
compared to other methods.  For example, the percentage of 
the overshoot is more than 17% for the FBP reconstruction 
with Hanning filtering (cutoff at 0.8 Nyquest frequency) on 
the Poisson noise.  This is expected since the spatially-
invariant filter does not model the non-stationary nature of the 
Poisson noise.  The uniformity performance of the K-L 
domain adaptive Wiener filtering on non-stationary noise is 
also superior as compared to iterative reconstructions, such as 
the penalized-likelihood estimation with a standard penalty 
(about 40% overshoot as estimated from [24]), and the 
penalized-likelihood estimation with a modified penalty 
(about 16% overshoot as estimated in [24]).  It is recognized 
that it is a challenging task to achieve a uniform resolution in 
few iterations and to suppress the noise at higher iterations 
[26]. 

30 40 50

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Lo
ca

l i
m

pu
ls

e 
re

sp
on

se

55 60 65 70 75

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Pixel
80 90 100

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 
Figure 5:  Horizontal profiles through the three LIR functions (for the three pixels 
of interest) from the FBP reconstructions with K-L domain adaptive Wiener 
filtering of the 250 noisy realizations.  From left to right: at the center of the hot 
disk, the center of the image, and the center of the cold disk, respectively. 

D. Noise-Resolution Tradeoff 
It is well known that the cutoff frequency of Hanning filter 

(and other conventional filters) controls an overall tradeoff 
between noise and resolution: a lower cutoff frequency leads 
to coarser resolution but less noisy, and vice versa.  For 
signal-dependent Poisson noise, a single cutoff frequency is 
not sufficient to achieve a good tradeoff for noise reduction 
and resolution preservation across the field-of-view.  An 
adaptive process is desired.  The analyses in sections above 
show that the proposed K-L domain Wiener filtering method 
can adaptively smooth the sinogram according to the SNRs of 
each principal component.  This unique property of adaptive 
filtering the components independently and locally in the K-L 
domain is explored below in a more quantitative manner. 

The NRT induced by the conventional methods and our 
approach were calculated, as shown in Figure 6.  The 
resolution was measured by an average of full-width-at-half-
maximum (FWHM) along the horizontal and vertical 
directions of each LIR, while the noise was measured by the 
empirical standard deviation.  As discussed in the previous 
sections, the K-L domain adaptive Wiener filter is nonlinear, 
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so that the resolution properties for FBP with the proposed 
method were generated from the empirical estimation from the 
250 realizations, while the resolution properties for FBP with 
the linear Hanning and Shepp-Logan filters were determined 
using the linearized predictions of LIR.  The curves for the 
low-pass Hanning and Shepp-Logan filters reflect the NRT 
for different cutoff frequencies.  The effects of the K-L 
domain adaptive Wiener filter were studied with the 
smoothing parameter β in Eq.(1) equals to 0.5, 1.0 , 2.0 and 
5.0, respectively.  In the figure, the NRT curves of the 
Hanning and Shepp-Logan filters follow an essentially similar 
trend, while all the data points from the presented adaptive 
filtering draw a curve much more close to the axes, indicating 
a superior tradeoff performance. 

 
Figure 6:  NRT at the centers of the cold disk and the hot disk for the FBP with K-
L domain adaptive Wiener filter and Hanning/Shepp-Logan filters.  Left is the 
result for the pixel at the center of the cold disk and right is the result for the pixel 
at the center of the hot disk. 

IV. DISCUSSION AND CONCLUSION 
The non-stationary noise in SPECT must be treated by 

corresponding methods, not the spatially-invariant low-pass 
linear filters.  The presented K-L domain adaptive approach 
with the Anscombe transform is a choice so far to consider the 
non-stationary and correlative properties of the sinogram. 
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